
ROCKWELL INTERNATION.. (U) INFORMATION SYSTEMS AND
TECHNOLOGY CENTER N-P AFB OH ADA YALI. 23 JUN 87

UNCLRSSIFIED AVF-YSR-112.6787 F/O 12/5 NL

smmhhmmhhh.m

IIIJIL2 m___5

MICROCOPY RESOLUTION TEST CHARI

JRFAlj ., -; ANnARD' 1963-A

1 L

11111 a5

,IC FILE COP

o AVF Control Number: AVF-VSR-112.0787
In 87-01-21-RWL

Ada ® COMPILER
VALIDATION SUMMARY REPORT:

Rockwell International
DDC-Based Ada/CAPS Compiler, 1.0

VAX-11/8650 host and CAPS/AAMP target

Completion of On-Site Testing:
23 June 1987

Prepared By:
Ada Validation Facility

ASD/SCOL
Wright-Patterson AFB OH 45433-6503

DTIC
Prepared For: ELECTE

Ada Joint Program Office APR 0 11988
United States Department of DefenseWashington, D.C. 04 14

®Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

fstmIuTIoN 9TAJTEMENT

Appie dfoorpubDC~e)O 88 4 1 " 06a
JYatlbutikvn TThIUD1W'd

sin~~ss..gwmnw~sa9"1 FL% In 16s ann WWI"amaUM aaf. n .. .~

UNCLASSIFIED0
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) _________________

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
REPOT DCUMETATON PGEBEFORE COMPLETEING FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED'
Ada Compiler Validation Summary Report: 23 June'87 to 23 June'88
Rockwell International DDC-Based Ada/CAPS_____________
Compiler, 1.0 VAX-11/8650 host and CAPS/AAMP 6. PERFORMING ORG. REPORT NUMBER
tar et___________ __

7It-F'atterson AFB OH 45433-6503 8 OTATO RN UBRs

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
Wright-Patterson AFB OH 45433-6503 AREA & WORK UNIT NUMBERS

11. CONTROL*LING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 23 June 1987
United States Department of Defense 13. NUMBER OF FAUE5
Washington, DC 20 301-3081ASD/SIOL 3p

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)

Wright-Patterson AFB OH 45433-6503. UNCLASSIFIED

~a. RE~A8JFICATION/DOWNGRADINGN/A
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. if different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY MOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSIE/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DO u" 1473 EDITION OF I NOV 65 IS OBSOLETE
I JAM 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

+ Place NTIS form here +

............ +.

4

Ada® Compiler Validation Summary Report:

Compiler Name: DDC-Based Ada/CAPS Compiler, 1.0

Host: Target:
VAX-11/8650 under CAPS/AAMP (bare machine)
VMS, Version 4.5

Testing Completed 23 June 1987 Using ACVC 1.8

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

Ada Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA

Ada Jdnt Program Office
Virginia L. Castor r
Director
Department of Defense
Washington DC

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the DDC-Based Ada/CAPS Compiler, 1.0,
using Version 1.8 of the Adas Compiler Validation Capability (ACVC). The
DDC-Based Ada/CAPS Compiler is hosted on a VAX-11/8650 operating under VMS,
Version 4.5. Programs processed by this compiler may be executed on a
CAPS/AAMP (hare machine).

On-site testing was performed 22 June 1987 through 23 June 1987 at 400
Collins Road NE, Cedar Rapids Iowa, under the direction of the Ada
Validation Facility (AVF), according to Ada Validation Organization (AVO)
policies and procedures. The AVF identified 2138 of the 2399 tests in ACVC
Version 1.8 to be processed during on-site testing of the compiler. The 19
tests withdrawn at the time of validation testing, as well as the 242
executable tests that make use of floating-point precision exceeding that
supported by the implementation, were not processed. After the 2138 tests
were processed, results for Class A, C, D, and E tests were examined for
correct execution. Compilation listings for Class B tests were analyzed
for correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.
There were 179 of the processed tests determined to be inapplicable. The
remaining 1959 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
. 4 5 6 7 8 10 11 12 14

Passed 96 223 296 246 161 97 136 261 128 32 218 65 1959

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 20 102 124 1 0 0 3 1 2 0 0 168 421

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399 i For

The AVF concludes that these results demonstrate acceptable conformity to ed 50
ANSI/MIL-STD-1815A Ada. Ju.ii cato

By _ .

__Distribution/ &
Avall1bility Codes

®Ada is a registered trademark of the United States Government . Avall 181
(Ada Joint Program Office). !Dist Spec a~lI~u\

TABLE OF CONTENTS

CHAPTER I INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES 1-3
1.11 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFTGURATION INFORMATION

2., CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 SPLIT TESTS 3-4
3.7 ADDITIONAL TESTING INFORMATION 3-4
3.7.1 Prevalidation 3-4
3.7.2 Test Method 3-5
3.7.3 Test Site 3-6

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

S

CHAPTER I

INTRODUCTION

This Validation Summary Report TSRI- describes the e to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of
particular operating systems, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler
are given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. WThe purpose of validating is to ensure conformity
of the compiler to the Ada-Standard by testing that the compiler properly

implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

I-5-

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any languag .onstructs supported by the
compiler that do not conform to the Ada Standard

• To attempt to identify any unsupported language constructs
required by the Ada Standard

• To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
22 June 1987 through 23 June 1987 at 400 Collins Road NE, Cedar Rapids
Iowa.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler Versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

1-2

A FLA_

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983.

2. Ada Validation Organization: Procedures and Guidelines, Ada Joint

Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs

that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations

according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this

report, the AVO is responsible for setting procedures for
compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3

WB W & 6 '- ---------

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or features to the Ada Standard. In the
context of this report, the term is used to designate a
single test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to check conformity
test to the Ada language specification. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D test, check the compilation and execution capacities of a c uiler.
Since there are no capacity requirements placed)n a compiler by .he Ada
Standard for some parameters--for example, the number of identifiers

1-4

V VM"V .'D

INTRODUCTION

permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation.

1-5

INTRODUCTION

Any test that was determined to contain an illegal language construct or an
erroneous language construct is withdrawn from the ACVC and, therefore, is
not used in testing a compiler. The tests withdrawn at the time of
validation are given in Appendix D.

.1'

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: DDC-Based Ada/CAPS Compiler, 1.0

ACVC Version: 1.8

Certificate Number: 870601W1.08061

Host Computer:

Machine: VAX-11/8650

Operating System: VMS, Version 4.5

Memory Size: 16 megabytes

Target Computer:

Machine: CAPS/AAMP (bare machine)

Memory Size: 256K words

Communications Network: Ethernet

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following
interpretations of the Ada Standard:

" Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A..H (8
tests), D56001B, D64005E..G (3 tests), and D29002K.)

" Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation rejects such calculations. (See tests D4AO02A,
D4AO02B, D4AO04A, and D4A004B.)

" Predefined types.

This implementation supports the additional predefined types
SHORT INTEGER, LONG INTEGER, and LONG FLOAT in the package
STANDARD. (See tests B86001C and B86001D.)

• Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERIC ERROR. (See test E24101A.)

• Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT.

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
CONSTRAINT ERROR when the array type is declared. (See test
C52103X.)

2-2

CONFIGURATION INFORMATION

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINT-ERROR when the array type is
declared. (See test C5210Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERICERROR or CONSTRAINTERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises CONSTRAINTERROR
when the array type is declared. (See test E52103Y.)

In assigning one-dimensional array %oypes, the expression appears
to be evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are not evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

2-3

CONFIGURATION INFORMATION

" Functions.

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in the
same immediate scope, or it may reject the function declaration.
If it accepts the function declaration, the use of the enumeration
literal's identifier denotes the function. This implementation
rejects the declaration. (See test E66001D.)

" Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other language features.
This implementation accepts 'STORAGE SIZE for collections or
tasks; it rejects 'SIZE and 'SMALL clauses. Enumeration
representation clauses appear not to be supported. (See tests
C55B16A, C87B62A, C87B62B, C87B62C, and BC1002A.)

• Pragmas.

The pragma INLINE is supported for procedures. The pragma INLINE
is supported for functions. (See tests CA3004E and CA3004F.)

" Input/output.

The package SEQUENTIAL 10 can be instantiated with unconstrained
array types and record types with discriminants. The package
DIRECT 10 can be instantiated with unconstrained array types and
record types with discriminants without defaults. However, the
target has no file system. (See tests AE2101C, AE2101H, CE2201D,
CE2201E, and CE2401D.)

" Generics.

Generic subprogram declarations and bodies cannot be compiled in
separate compilations. (See test CA2009F.)

Generic package declarations and bodies cannot be compiled in
separate compilations. (See tests CA2009C and BC3205D.)

2-4

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of

the DDC-Based Ada/CAPS Compiler was performed, 19 tests had been withdrawn.
The remaining 2380 tests were potentially applicable to this validation.

The AVF determined that 421 tests were inapplicable to this implementation,
and that the 1959 applicable tests were passed by the implementation.

The AVF concludes that the testing results demonstrate acceptable

conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 68 866 952 15 12 46 1959

Failed 0 0 0 0 0 0 0

Inapplicable 1 1 416 2 1 0 421

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 _9..O 11 12 14

Passed 96 223 296 246 161 97 136 261 128 32 218 65 1959

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 20 102 124 1 0 0 3 1 2 0 0 168 421

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
this validation:

C32114A C41404A B74101B
B33203C B45116A C87B50A
C34018A C48008A C92005A
C35904A B49006A C940ACA
B37401A B4A010C CA3005A..D (4 tests)

BC3204C

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 426 tests were inapplicable for the
reasons indicated:

* C34001F and C35702A use SHORTFLOAT which is not supported by this
compiler.

• D4AOO2B and D4AO04B use 64-bit integer calculations which are not
supported by this compiler.

3-2

TEST INFORMATION

• C55B16A makes use of an enumeration representation clause
containing noncontiguous values which is not supported by this
compiler.

• B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

" C87B62A and C87B62C use length clauses which are not supported by
this compiler. The length clause is rejected during compilation.

" C96005B checks implementations for which the smallest and largest
values in type DURATION are different from the smallest and
largest values in DURATION's base type. This is not the case for
this implementation.

" CA2009C and CA2009F compile the body and subunits of a generic
unit in separate compilation files. Separate compilation of
generic specifications and bodies is not supported by this
compiler.

" The following 168 tests are inapplicable because DIRECT_10,
SEQUENTIAL 10, and TEXTIO are not supported by this
implementation:

CE2102C CE3108A..B (2 tests) CE3411C
CE2102G CE3109A CE3412A
CE2104A..D (4 tests) CE3110A CE3412C
CE2105A CE3111A..E (5 tests) CE3413A
CE210O6A CE3112A..B (2 tests) CE3413C
CE2107A..F (6 tests) CE3114A..B (2 tests) CE3602A..D (4 tests)
CE2108A..D (4 tests). CE3115A CE3603A
CE2109A CE3201A CE3604A
CE2110A..C (3 tests) CE3202A CE3605A..E (5 tests)
CE2111A..E (5 tests) CE3203A CE3606A..B (2 tests)
CE2111G..H (2 tests) CE3208A CE3704A..B (2 tests)
CE2201A..F (6 tests) CE3301A..C (3 tests) CE3704D..F (3 tests)
CE2204A..B (2 tests) CE3302A CE3704M..O (3 tests)
CE2210A CE3305A CE3706D
CE2401A..F (6 tests) CE34O2A..D (4 tests) CE3706F
CE2404A CE3403A..C (3 tests) CE3804A..E (5 tests)
CE2405B CE3403E..F (2 tests) CE3804G
CE2406A CE3404A..C (3 tests) CE3804I
CE2407A CE3405A..D (4 tests) CE3804K
CE2408A CE3406A..D (4 tests) CE3804M
CE2409A CE3407A..C (3 tests) CE3805A..B (2 tests)
CE2410A CE3408A..C (3 tests) CE3806A
AE3101A CE3409A CE3806D..E (2 tests)
CE3102B CE3409C..F (4 tests) CE3905A..C (3 tests)
EE3102C CE341OA CE3905L
CE3103A CE341OC..F (4 tests) CE3906A..C (3 tests)
CE3104A CE3411A CE3906E..F (2 tests)
CE3107A

3-3

TEST INFORMATION

The following 242 tests require a floating-point accuracy that
exceeds the maximum of 9 supported by the implementation:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..Y (20 tests)
C45241F..Y (20 tests) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45424F..Y (20 tests)

C45521F..Z (21 tests) C45621F..Z (21 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.

Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for five Class B tests:

B33301A B55AOlA B67001A
B67001C B67001D

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the DDC-Based Ada/CAPS Compiler was submitted to the AVF by the applicant
for review. Analysis of these results demonstrated that the compiler

successfully passed all applicable tests, and that the compiler exhibited
the expected behavior on all inapplicable tests.

3-4

I,

UW~~~vw~~~rvv~ WVIN WUq WT FV-WW W -q etA I VW1

TEST INFORMATION

3.7.2 Test Method

Testing of the DDC-Based Ada/CAPS Compiler using ACVC Version 1.8 was
conducted on-site by a validation team from the AVF. The configuration
consisted of a VAX-11/8650 host operating under VMS, Version 4.5, and an
Advanced Architecture Microprocessor (AAMP) target (see figure below). A
CDS-85 Computer Development Station was used to facilitate running the
executable tests. An executable image for each test was downloaded from
the VAX to the CDS-85 using Ethernet. An Ada Symbolic Debugger, Version
3.3, was used to load each image into CDS-85 memory from which the program
was executed by the AAMP. The Processor Memory Element Board provided the
clock used by the AAMP. Test output was captured by the CDS-85.

(VMS 4.5) EthernotAMPP

Proweno

HOST TARGET

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring splits during the prevalidation testing
were included in their split form on the magnetic tape.

The body of package REPORT was modified to use a package SIMPLE 10 instead
of TEXT 10 because package TEXTIO is implemented in such that a way an
exception is raised for all file operations. A set of executable tests was
run to verify that the modified body of package REPORT operated correctly.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled on the VAX-11/8650, and all executable tests were run on the

CAPS/AAMP. Object files were linked on the host computer, and executable
images were transferred to the target computer. The transferred executable
images did not include those portions of the run-time system that are
identical for every test. The run-time system was loaded once for each
chapter and used by each test. This had the effect of significantly
reducing the time needed for downloading the tests. Results were printed
from the host computer, with results being transferred to the host computer
via Ethernet.

3-5

TEST INFORMATION

The compiler was tested using command scripts provided by Rockwell
International and reviewed by the validation team. Default options were in
effect for testing, except for the following:

Option Effect

/LIST Generate a source listing
/NODEBUG Suppress debugger information
/NOOBJECT Suppress object code generation (for Class B

and L tests)

Tests were compiled, linked, and executed (as appropriate) using I host
computer and 1 target computer. Test output, compilation listings, and job
logs were captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3.7.3 Test Site

The validation team arrived at 400 Collins Road NE, Cedar Rapids Iowa on 22
June 1987, and departed after testing was completed on 23 June 1987.

3-6

APPENDIX A

DECLARATION OF CONFORMANCE

Rockwell International has subritted the following
declaration of conformance concerning the DDC-Based
Ada/CAPS Compiler.

A-1

.a

DECLARATION OF CONFORMANCE

Compiler Implementor: Rockwell International Corporation
Ada® Validation Facility: ASD/SCOL, Wright-Patterson AFB, OH
Ada Compiler Validation Capability (ACVC) Version: 1.8

Base Configuration

Base Compiler Name: DDC-Based Ada/CAPS Compiler Version: 1.0
Host Architecture ISA: VAX-11/8650 OS&VER #: VMS, VERSION 4.5
Target Architecture ISA: CAPS/AAMP (bare machine)

Implementor's Declaration

I, the undersigned, representing Rockwell International Corporation, have
implemented no deliberate extensions to the Ada Language Standard
ANSI/MIL-STD-1815A in the compiler(s) listed in this declaration. I
declare that Rockwell International Corporation is the owner of record of
the Ada language compiler(s) listed above and, as such, is responsible for
maintaining said compiler(s) in conformance to ANSI/MIL-STD-1815A. All
certificates and registrations for Ada language compiler(s) listed in this
declaration shall be made only in the owner's corporate name.

Date: - • .
Rockwell International Corporation
Don R. Stover, Manager
Computer Support Systems Section

Owner's Declaration

I, the undersigned, representing Rockwell International Corporation, take
full responsibility for implementation and maintenance of the Ada
compiler(s) listed above, and agree to the public disclosure of the final
Validation Summary Report. I further agree to continue to comply with the
Ada trademark policy, as defined by the Ada Joint Program Office. I
declare that all of the Ada language compilers listed, and their
host/target performance are in compliance with the Ada Language Standard
ANSI/MIL-STD-1815A.

Rce "Date: .

Rockwell International Corporation
Don R. Stover, Manager
Computer Support Systems Section

5 Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

A-2

~~~~~6 * %W._V V %



*1P

APPENDIX B .

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the DDC-Based Ada/CAPS Compiler, 1.0, are described in the following
sections which discuss topics in Appendix F of the Ada Language Reference
Manual (ANSI/MIL-STD-1815A). Implementation-specific portions of the
package STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -32 768 .. 32 767;
type SHORT INTEGER is range -128 .. 127;
type LONG YNTEGER is range -2 147 483 648 .. 2 147 483_647;

type FLOAT is digits 6 range -1.701411E38 .. 1.701411E38;
type LONGFLOAT is digits 9

range -1.701411834E38 .. 1.701411834E38;

type DURATION is delta 0.0001 range -131 072.0 .. 131 071.0;

end STANDARD;

B-1



F ~ ~r.M21L Xi ~J ~.FU.~ F ~ k - 5 5-~ w. W. ~ w- ~ W. W. ~ -' '* ~ -.- - ~. - w~*I--U.--w1~.1..* 6-t, -w jjww.'u I

APPENDIX F

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

This appendix describes the implementation-dependent characteristics of
the DDC-Based Ada/CAPS Compiler.

F.1 Implementation-Dependent Pragmas.

No implementation-dependent pragmas are supported.

F.2 Implementation-Dependent Attributes.

No implementation-dependent attributes are supported.

F.3 Specification Of The Package SYSTEM.

package SYSTEM is

type ADDRESS is range 0. .16#FF FFFF# -- 24 bit address
subtype PRIORITY is INTEGER range U.. 254;
type NAME is (VAXIl, AAMP, CAPS6, CAPS7,

CAPS8, CAPS1O, ACAPS);
SYSTEM NAME: constant NAME :-AAMP;

STORAGE UNIT: constant :=16;
MEMORY _SIZE: constant :-16 384 * 1024;
MIN_ INT: constant :--147 483 647-1;
MAXINT: constant -2_47_T83_647;
MAXDIGITS: constant :-9;

MAX MANTISSA: constant :-31;

FINEDELTA: constant :-2#1.0#E-30;

TICK: constant :-0.000_1;

end SYSTEM;

B- 2

* * * * - * . ~ . .... ----- P



: 1?':E£ENTATLON-DEPE DET CHARACTERI5TICS

F.4 Representation Clause Restrictions.

F.4.1 Representation Clauses.

In general, no representation clauses may be given for a derived type.
The representation clauses that are allowed for non-derived types are
descrioed in the following sections.

F.4.2 Length Clauses.

The compiler accepts only length clauses that specify the number of
storage units reserved for a collection or a task activation.

F.4.3 Enumeration Representation Clauses.

Enumeration representation clauses are not supported.

F.5 Implementation-Generated Names.

Implementation-generated names for implementation-dependent components
are not supported.

F.6 Address Clause Expressions.

All address values are treated as the address of a 16 bit word of
memory, even for code addresses which are normally thought of as 8 bit
(byte) addresses. All subprogram and task entry addresses are word
aligned by the compiler. The address clause for an interrupt entry is
not supported.

F.7 Unchecked Conversion Restrictions.

Unchecked conversion is only allowed between values of the same size.

F.8 I/O Package Implementation-Dependent Characteristics.

The target environment does not support a file system; therefore I/O
procedure or function calls involving files will raise predefined
exceptions.The I/O exceptions raised will be as follows for the
subprograms in the packages TEXTIO, SEQUENTIALIO, and DIRECTIO:

B-3



I P'E1-EN TAT!.DEPENDE;T CHARACTER S
- T-.S

Subprogram Exception

CREATE USE ERROR
OPEN USE-ERROR
ISOPEN none - always returns FALSE

All other subprograms will raise STATUS ERROR.

F.8.1 Package LOWLEVELIO.

Package LOWLEVELIO is not provided.

F.9 Other Implementation-Dependent Features.

F.9.1 Predefined Types.

This section describes the implementation-dependent predefined types
declared in the predefined package STANDARD, and the relevant attributes
of these types.

F.9.1.1 Integer Types.

Three predefined integer types are implemented, SHORT INTEGER, INTEGER,
and LONG-INTEGER. They have the following attributes:

SHORT INTEGER'FIRST - -128
SHORTINTEGER'LAST - 127
SHORT INTEGER'SIZE - 16

INTEGER.FIRST - -32768

INTEGER'LAST - 32767
INTEGER'SIZE - 16

LONG INTEGER'FIRST - -2 147 483 648
LONG-INTEGER'LAST - 2-147-483-647LONG-INTEGER'SIZE M - -- - 32

B-4



IMPLEMENTATION-DEPENDENT CHARACTERISTICS

F.9.1.2 Floating Point Types.

Two predefined floating point types are implemented, FLOAT and
LONGFLOAT. They have the following attributes:

FLOAT'DIGITS -6

FLOAT'EMAX 84
FLOAT'EPSILON 16#0.1000 000#E-04

9.53674E-67
FLOAT'FIRST -- 16*0.7FFF FF8*E+32

-1-.70141E+-38

FLOAT'LARGE 16#0.FFFF FB0#E+21
1.93428E+75

FLOAT'LAST =16#0.7FFF FF8#E+32
1 .70141E-K18

FLOAT'MACHINEEMAX =127

FLOAT'MACHINEEMIN =-127
FLOAT'MACHINE MANTISSA -24
FLOAT'MACHINEOVERFLOWS -TRUE
FLOAT'MACHINERADIX -2

FLOAT'MACHINEROUNDS -TRUE

FLOAT'MANTISSA - 21
FLOAT'SAFE EMAX -127

FLOAT'SAFELARGE -16#0.7FFF FCO#E+32
1 .70141E+-18

FLOAT'SAFESMALL -16#0.1000 000#E-31
-2.93874E--19

FLOAT'SIZE -32

FLOAT'SMALL =16#0.8000 000#E-21
=2.58494E-16

LONG FLOAT'DIGITS 9
LONG FLOATE'AX -124

LONGFLOAT'EPSILON -16#0.4000 0000 000#E-7
-- 9.31322573SE-l0-

LONGFLOAT'FIRST =-16#0.7FFF FFFF FF8#E+32
-= -. 7014118!SE+38-

LONGFLOAT'LARGE -16#0.FFFF FFFE 000#E+31
-2.1267647 JE+37-

LONGFLOAT'LAST 16*0.7FFF FFFF FF8#E+32
1 .7014118!IE+38-

LONG FLOAT'MACHINE EMAX =127

LONG FLOAT'MACHINE-EMIN -- 127
LONG FLOAT'MACHINE MANTISSA -40

LONG FLOAT' MACHINE OVERFLOWS -TRUE

LONG FLOAT'MACHINE RADIX -2

LONGFLOAT'MACHINE-ROUNDS -TRUE

B-5



IMPLEMENTATION-DEPENDENT CHARACTERISTICS

LONG FLOAT'MANTISSA 31
LONG FLOAT'SAFE EMAX 127
LONG-FLOAT'SAFE-LARGE 16#0.7FFF FFFF 000#E+32

~ 1.7014118IE+38-
LONG FLOAT'SAFE SMALL 16#0.1000 0000 000#E-31

-- 2.9387358gE-39
LONG FLOAT'SIZE 48
LONG FLOAT'SMALL 16#0.8000 0000 000#E-31

-- 2.35098876E-38-

F.9.1.3 Fixed Point Types.

To implement fixed point numbers, Ada/CAPS uses two sets of anonymous,
predefined, fixed point types, here named FIXED and LONG FIXED. These
names are not defined in package STANDARD, but are only used here for I
reference.

rhese types are of the following form:

type FIXEDTYPE is delta SMALL range -M*SMALL .. (M-1)*SMALL;

where SMALL - 2**n for -127 <- n <- 127,
and M - 2**15 for FIXED, or M - 2**31 for LONGFIXED.

For each of FIXED and LONG FIXED there exists a virtual predefined type
for each possible value of-SMALL (cf. RM 3.5.9).

A user defined fixed point type is represented as that predefined FIXED
or LONG FIXED type which has the largest value of SMALL not greater than
the user-specified DELTA, and which has the smallest range that includes
the user-specified range.

As the value of SMALL increases, the range increases. In other words,
the greater the allowable error (the value of SMALL), the larger the
allowable range.

Example 1:

For a FIXED type, to get the smallest amount of error possible requires
SMALL - 2"*-127, but the range is constrained to:

-2,*-122 .. ((2.*-122) - (2,*-127)).

Example 2:

For a FIXED type, to get the largest range possible requires SMALL -
2**127, i.e., the error may be as large as 2**127. The range is then:

-2**132 .. ((2**132) - (2**127)).

For any FIXED or LONGFIXED type T:

T'NACHINE OVERFLOWS - TRUE
T'MACHINEROUNDS FALSE

B-6



IMPLEMENTATION-DEPENDENT CHARACTERISTICS

F.9.1.4 The Type DURATION.

The predefined fixed point type DURATION has the following attributes:

DURATION'AFT 4
DURATION'DELTA 0.0001
DURATION'FIRST -131_072.0000
DURATION'FORE 7
DURATION'LARGE 131 071.999938965

2#10#E+17 - 2#I.OE-14
DURATION'LAST DURATION'LARGE
DURATION'MANTISSA 31
DURATION'SAFELARGE DURATION'LARGE
DURATION'SAFE SMALL DURATION'SMALL
DURATION'SIZE 32
DURATION'SMALL 6.103515625E-5

2#1.0#E-14

F.9.2 Uninitialized Variables.

There is no check on the use of uninitialized variables. The effect of
a program that uses the value of such a variable is undefined.

F.9.3 Package MACHINECODE.

Machine code insertions (cf. RM 13.8) are supported by the Ada/CAPS
compiler via the use of the predefined package MACHINE-CODE.

package MACHINECODE is

type CODE is record
INSTR: STRING (1 .. 80);

end record;

end MACHINE CODE;

Machine code insertions may be used only in a procedure body, and only
if the body contains nothing but code statements, as in the following
example:

with MACHINECODE; -- Must apply to the compilation unit
-- containing DOUBLE.

procedure DOUBLE (VALUE: in INTEGER; DOUBLE-VALUE: out INTEGER);

procedure DOUBLE (VALUE: in INTEGER; DOUBLE-VALUE: out INTEGER) is

begin

MACHINECODE.CODE' (INSTR -> "REFSL 1"); -- Get VALUE.

B-7

L nxl. Uq U1 4 U dA:



:MIPLEMENTATION-DEEN.DEN. CHARACTER:ST CS

MACHINE CODE.CODE' (INSTR -> "DUP"); -- Make copy of VALUE.
MACHINE -CODE.CODE' (INSTR -> "LOCX"); -- Add copies together.
MACHINECODE.CODE' (INSTR -> "ASNSL 0"); -- Store result in DOUBLE-VALUE

end DOUBLE;

The string value assigned to INSTR may be a CAPS assembly language
instruction or macro.

F.9.4 Compiler Limitations.

The following limitations apply to Ada programs in the DDC-Based
Ada/CAPS Compiler System:

o A program (sum of all compilation units) may not contain more
than 64K words of static data and stacks. Static data is
allocated for variables declared in the specification or body
of a package. A stack is allocated for each task including the
main program. Some of the 64K maximum is used by the runtime
system. Static data requirements exceeding the 64K word
maximum may be permanently allocated to the heap at the cost of
an additional indirect memory access.

o A compilation unit may not contain more than 64K bytes (32K
words) of code.

o A compilation unit may not contain more than 32K words of data.

o A compilation unit may not contain more than 32K words of
constants.

o It follows that any single object may be no larger than 32K %
words.

o No more than 500 subprograms may be defined in a single
compilation unit, including any implicitly allocated by the %
compiler.

o The maximum nesting level for blocks is 100.

B-8
'f

0-



APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIGIDi (1 .. 125 => 'A', 126 => '1')
Identifier the size of the
maximum input line length with
varying last character.

$BIG ID2 (1 .. 125 => 'A', 126 => '2')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (1 .. 62 => 'A', 63 => '3', 64 .. 126 => 'A')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGID4 (1 .. 62 => 'A', 63 => '4', 64 .. 126 => 'A') .

Identifier the size of the
maximum input line length with
varying middle character.

$BIGINTLIT (1 .. 123 > '0', 124 .. 126 :> '298')
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-1

.......... ... ... W . *- ,:*.*.q.% * - ,- *, . q . .,



TEST PARAMETERS

Name and Meaning Value

$BIGREALLIT (1 .. 120 => '0', 121 .. 126 => '69.0EI')
A real literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
the size of the maximum line
length.

$BLANKS (1 .. 106 => ' ')
A sequence of blanks twenty
characters fewer than the size
of the maximum line length.

$COUNTLAST 2_147_483_647
A universal integer literal
whose value is TEXTIO.COUNT'LAST.

$EXTENDEDASCII CHARS "abcdefghijklmnopqrstuvwxyzl$%?@[\]'{}-"
A string literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD_ LAST 35
A universal integer literal
whose value is TEXT IO.FIELD'LAST.

$FILENAME WITH BAD CHARS X}]!@#$-&'Y
An illegal- external file name
that either contains invalid
characters, or is too long if no
invalid characters exist.

$FILE NAME WITH WILD CARD CHAR XYZO

An external file name that
either contains a wild card

character, or is too long if no
wild card character exists.

$GREATERTHANDURATION 76_536.0
A universal real value that lies

between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$GREATERTHANDURATIONBASELAST 10_000_000.0
The universal real value that is
greater than DURATION'BASE'LAST,
if such a value exists.

C-2

A" A" W& A" am... ~ Y.~'~CF-.



TEST PARAMETERS

Name and Meaning Value

$ILLEGALEXTERNAL FILE NAME BAD-CHARACTER*"
An illegal external file name.

$ILLEGAL EXTERNAL FILE NAME2 MUCH-TOO-LONG-NAME-FOR-A-FILE
An illegal external file name
that is different from
$ILLEGALEXTERNALFILE NAME 1.

$INTEGERFIRST -2_147_483_647- 1
The universal integer literal
expression whose value is
INTEGER' FIRST.

$INTEGERLAST 2_147_483_647
The universal integer literal
expression whose value is
INTEGER' LAST.

$LESS THAN DURATION -76536.0
A universal real value that lies
between DURATION'BASE'FIRST and

DURATION'FIRST if any, otherwise
any value in the range of
DURATION.

$LESS THAN DURATION BASEFIRST -10_000000.0
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

$MAXDIGITS 9

The universal integer literal
whose value is the maximum
digits supported for
floating-point types.

$MAXINLEN 126
The universal integer literal
whose value is the maximum
input line length permitted by
the implementation.

$MAXINT 2_147_483_647
The universal integer literal
whose value is SYSTEM.MAXINT.

C-3 -

'p



TEST PARAMETERS

Name and Meaning Value

$NAME LONGLONGINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT-FLOAT, SHORTINTEGER,
LONGFLOAT, or LONG INTEGER
if one exists, otherwise any
undefined name.

$NEGBASED INT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

$NON ASCII_CHARTYPE (NON-NULL)
An enumerated type definition
for a character type whose
literals are the identifier
NON NULL and all non-ASCII
characters with printable
graphics.

C- 4

-.. J----------~~us........................'¢
.P~~?~I V~~



& I

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

• C32114A: An unterminated string literal occurs at line 62.

• B33203C: The reserved word "IS" is misspelled at line 45.

• C34018A: The call of function G at line 114 is ambiguous in the
presence of implicit conVersions.

" C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERICERROR instead of CONSTRAINTERROR as expected in '-

the test.

" B37401A: The object declarations at lines 126 through 135 follow
subprogram bodies declared in the same declarative part.

" C41404A: The values of 'LAST and 'LENGTH are incorrect in the if
statements from line 74 to the end of the test.

" B45116A: ARRPRIBL1 and ARRPRIBL2 are initialized with a value of
the wrong type--PRIBOOLTYPE instead of ARRPRIBOOLTYPE--at line
41.

" C48008A: The assumption that evaluation of default initial values
occurs when an exception is raised by an allocator is incorrect
according to AI-00397.

• B49006A: Object declarations at lines 41 and 50 are terminated
incorrectly with colons, and end case; is missing from line 42.

• B4AO10C: The object declaration in line 18 follows a subprogram
body of the same declarative part.

D-1



WITHDRAWN TESTS

" B74101B: The begin at line 9 causes a declarative part to be
treated as a sequence of statements.

" C87B50A: The call of "/=" at line 31 requires a use clause for
package A.

" C92005A: The "/=" for type PACK.BIG INT at line 40 is not visible
without a use clause for the package PACK.

" C940ACA: The assumption that allocated task TT will run prior to
the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

" CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

• BC3204C: The body of BC3204CO is missing.

D-2.

a.
a.

. . .. . . . . .. ..

X 101\.AY



16

El)e

qw qw w w w w w w

4P *%%'\


